The reduction of allylic chlorides and $PdCl_2$ (or $PtCl_2$) to π -allyl complexes

J.H. LUKAS and J.E. BLOM Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research N.V.) (The Netherlands) (Received October 21st, 1970)

Various methods are known for the preparation of π -allylpalladium chloride complexes. One of these involves the reaction of allyl chloride with palladium chloride in the presence of a reducing system such as CO/H_2O^1 or $SnCl_2^2$. It has been suggested that the reaction with CO/H_2O proceeds via an intermediate square planar palladium complex containing OH, CO, Cl and the allylic chloride as ligands with the complex subsequently decomposing to π -allylpalladium chloride and CO_2 . The mechanism of the reaction with $SnCl_2$ is not known².

We have looked for other suitable reducing agents, and examined the use of this method for the preparation of π -allylplatinum complexes. Tests were performed with reducing agents having about the same redox potential as the system $\text{SnCl}_2 + \text{Cl}_2 \neq \text{SnCl}_4$. The results are presented in Table 1. Although the known agents viz. CO and SnCl_2 ; give the best yields, the extreme facility of the reaction with, for example, Fe powder was remarkable. Reagents such as FeCl₂, FeCl₂ • 4H₂O, CuCl, H₂S and Na₂S₂O₃ failed to give the desired product, mainly because of the occurrence of other reactions.

The chloride $PtCl_2$ which dissolves in acetone, tetrahydrofuran, dioxane or diglyme in the presence of LiCl gave π -allylplatinum chloride in 90% yield when $SnCl_2$ was used as the reducing agent. The CO/H₂O reducing system, on the other hand, proved

TABLE 1

SYNTHESIS OF	TALLYLPALLADIUM CHLORIDE AND π -ALLYLPLATINUM CHLORIDE

Metal halide	Solvent	Reducing agent	Reaction temperature (°C)	Reaction time (min)	Yield (%)
Na ₂ PdCl ₄	CH ₃ OH	SnCl ₂ (1 equiv.)	25	90	82
Na ₂ PdCl ₄	CH ₃ OH	CO CO	25	45	70
Na ₂ PdCl ₄	CH₃OH	TiCl ₃ (1 equiv.)	25	1000	51
Na ₂ PdCl ₄	CH ₃ OH	Fe (3 equiv.)	25	1	39
Na ₂ PdCl ₄	CH ₃ OH	Zn (3 equiv.)	25	8	24
Na ₂ PdCl ₄	CH ₃ OH	Cu (3 equiv.)	25	15	24
K ₂ PtCl ₄	LiCI/THF	SnCl ₂ (1 equiv.)	65	60	90

J. Organometal. Chem., 26 (1971) C25-C26

ineffective: The product $[C_3H_5PtCl]_n$ has so far been made only from C_3H_5MgCl and $PtCl_2^3$.

Higher allyl chlorides failed to give π -allyl platinum complexes. Instead, disproportionation and hydrogenation occurred:

1-chloro-2-butene $\xrightarrow{PtCl_2/SnCl_2}$, 3-butadiene + 1-butene + 2-butene (I) (II) (III) (IV) (ratio I/II + III $\approx 1/1$)

When $PtCl_2$ was omitted the 1-chloro-2-butene (1) isomerized to 3-chloro-1-butene. As no hydrogenation products were formed, it seems that the presence of $PtCl_2$ is necessary to effect the elimination of HCl from I to give II. The hydrogenolysis of organic chlorides with $HCl/SnCl_2$ is a known reaction⁴.

The corresponding reaction with methallyl chloride yielded isobutene, but none of the expected methylenecyclopropane, which probably does not survive in the acid environment.

REFERENCES

- 1 J.K. Nicholson, J. Powell and B.L. Shaw, Chem. Commun., (1966) 174, and references cited therein.
- 2 M. Sakakibara, Y. Takahashi, S. Sakai and Y. Ishii, Chem. Commun., (1969) 396; R. Pietropaolo, G. Dolcetti, M. Giustiniani and U. Belluco, Inorg. Chem., 9 (1970) 549.
- 3 R. Raper and W.S. McDonald, Chem. Commun., (1970) 655, and references cited therein.
- 4 L.F. Fieser and M. Fieser, Reagents for organic synthesis, Wiley, New York, 1967, p. 1113.

J. Organometal. Chem., 26 (1971) C25-C26